Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 253
1.
Behav Pharmacol ; 35(4): 193-200, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38567425

Prepulse inhibition (PPI) is a crucial indicator of sensorimotor gating that is often impaired in neuropsychiatric diseases. Although dopamine D1 receptor agonists have been found to disrupt PPI in mice, the underlying mechanisms are not fully understood. In this study, we aimed to identify the brain regions responsible for the PPI-disruptive effect of the D1 agonist in mice. Results demonstrated that intraperitoneal administration of the selective dopamine D1 receptor agonist SKF82958 dramatically inhibited PPI, while the dopamine D1 receptor antagonist SCH23390 enhanced PPI. Additionally, local infusion of SKF82958 into the nucleus accumbens and medial prefrontal cortex disrupted PPI, but not in the ventral hippocampus. Infusion of SCH23390 into these brain regions also failed to enhance PPI. Overall, the study suggests that the nucleus accumbens and medial prefrontal cortex are responsible for the PPI-disruptive effect of dopamine D1 receptor agonists. These findings provide essential insights into the cellular and neural circuit mechanisms underlying the disruptive effects of dopamine D1 receptor agonists on PPI and may contribute to the development of novel treatments for neuropsychiatric diseases.


Benzazepines , Dopamine Agonists , Mice, Inbred C57BL , Nucleus Accumbens , Prefrontal Cortex , Prepulse Inhibition , Receptors, Dopamine D1 , Animals , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Dopamine Agonists/pharmacology , Mice , Benzazepines/pharmacology , Male , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/metabolism , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Reflex, Startle/drug effects , Sensory Gating/drug effects , Dopamine Antagonists/pharmacology
2.
Behav Brain Res ; 437: 114127, 2023 02 02.
Article En | MEDLINE | ID: mdl-36174843

The 5-hydroxytryptamine 2A (5-HT2A) receptor plays an important role in schizophrenia. The 5-HT2A receptor is also involved in the regulation of prepulse inhibition (PPI) in rodents. The aim of this study was to determine whether selective 5-HT2A receptor agonizts or antagonists may alter PPI in rats and to identify the critical brain regions in which the activity of 5-HT2A receptors regulates PPI. The results showed that infusion of the 5-HT2A receptor agonist TCB-2 into the lateral ventricle disrupted PPI, but the 5-HT2A receptor antagonist M100907 had no such effect. In addition, local infusion of TCB-2 into the nucleus accumbens and ventral pallidum disrupted PPI, whereas the same manipulation in the medial prefrontal cortex, ventral hippocampus, and ventral tegmental area did not disrupt PPI. In conclusion, agonism of 5-HT2A receptors in the ventral pallidum and nucleus accumbens can disrupt PPI. The ventral pallidum and nucleus accumbens are critical brain regions responsible for the regulation of PPI by serotonin. These findings contribute to the extensive exploration of the molecular and neural mechanisms underlying the regulatory effect of 5-HT2A receptor activity on PPI, especially the neural circuits modulated by 5-HT2A receptor activity.


Basal Forebrain , Nucleus Accumbens , Prepulse Inhibition , Receptor, Serotonin, 5-HT2A , Serotonin 5-HT2 Receptor Agonists , Animals , Rats , Basal Forebrain/drug effects , Basal Forebrain/physiology , Nucleus Accumbens/drug effects , Nucleus Accumbens/physiology , Prepulse Inhibition/drug effects , Rats, Sprague-Dawley , Serotonin 5-HT2 Receptor Agonists/pharmacology
3.
Article En | MEDLINE | ID: mdl-34560172

Prepulse inhibition (PPI) is disrupted in many neuropsychiatric diseases. Molecules such as 5-HT2C receptor agonists alleviate PPI deficits in rodents; however, the precise mechanisms and critical regions of the brain responsible for the reversal effect of these agonists remain inconclusive. The present study aimed to investigate the areas of the brain critical for the reversal effect of 5-HT2C receptor agonists on PPI deficits in mice. The results showed that systemic administration of the 5-HT2C receptor agonist MK212 did not affect normal PPI behavior, but reversed the PPI deficits induced by the N-methyl d-aspartate receptor antagonist MK801 in mice. In addition, the 5-HT2C receptor antagonist SB242084 had no effect on PPI behavior despite MK801 treatment. Moreover, local infusion of MK212 into the medial prefrontal cortex and ventral hippocampus, excluding the nucleus accumbens or ventral tegmental area, rescued the PPI deficits induced by MK801. These data suggest that the medial prefrontal cortex and ventral hippocampus are critical brain areas responsible for the reversal of 5-HT2C agonists on PPI deficits. The results will contribute to our current knowledge on the molecular and neural mechanisms underlying the antipsychotic effects of 5-HT2C receptor agonists, especially the neural circuits modulated by 5-HT2C receptor activity.


Hippocampus , Prefrontal Cortex , Prepulse Inhibition/drug effects , Pyrazines/pharmacology , Receptor, Serotonin, 5-HT2C/drug effects , Aminopyridines/pharmacology , Animals , Brain/drug effects , Dizocilpine Maleate/pharmacology , Hippocampus/chemistry , Hippocampus/physiology , Indoles/pharmacology , Mice , Prefrontal Cortex/chemistry , Prefrontal Cortex/physiology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/drug effects
4.
Behav Brain Res ; 416: 113545, 2022 01 07.
Article En | MEDLINE | ID: mdl-34437938

The prepulse inhibition (PPI) of the startle response can identify the rodents that are more sensitive to the effects of cocaine. Mice with a lower PPI presented a higher vulnerability to the effects of cocaine and a higher susceptibility to developing a substance use disorder (SUD). Maternal separation with early weaning (MSEW) is a relevant animal model to induce motivational alterations throughout life. Nevertheless, only a few studies on females exist, even though they are more vulnerable to stress- and cocaine-related problems. Hence, the aim of the present study was to evaluate the ability of PPI to identify females with a greater vulnerability to the long-term consequences of early stress on the motivational effects of cocaine. Female mice underwent MSEW and were classified according to their high or low PPI. They were then assessed in the cocaine-induced locomotor sensitization test, the conditioned place preference paradigm or the operant self-administration paradigm. Additionally, they were also evaluated in the passive avoidance task, the tail-suspension and the splash tests. The results revealed that the females with lower PPI presented higher consequences of MSEW on the effects of cocaine and showed an increase in anhedonia-like behaviours. Our findings support that a PPI deficit could represent a biomarker of vulnerability to the effects of cocaine induced by MSEW.


Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Maternal Deprivation , Motivation , Prepulse Inhibition/drug effects , Reflex, Startle/physiology , Anhedonia/drug effects , Animals , Conditioning, Operant/drug effects , Disease Models, Animal , Female , Mice , Self Administration , Weaning
5.
Int J Neuropsychopharmacol ; 25(2): 160-171, 2022 02 11.
Article En | MEDLINE | ID: mdl-34893855

BACKGROUND: Exposure to polyriboinosinic-polyribocytidylic acid (Poly I:C) in pregnant rats has been reported to cause schizophrenia-like behaviors and abnormal neurotransmissions in adult, particularly male, offspring. However, what is less well understood are the effects of maternal Poly I:C exposure on adolescent behaviors and neurotransmission in female juvenile rats. METHODS: Female adolescent Poly I:C offspring were constructed by treating with 5 mg/kg Poly I:C on timed pregnant rats (gestation day 15). A battery of behavioral tests was conducted during postnatal day 35-60. Neurotransmitter receptors and inflammation markers in brain regions were evaluated by RT-qPCR on postnatal day 60. RESULTS: Open field, elevated plus maze, and forced swimming tests revealed that prenatal Poly I:C exposure led to elevated anxiety-like and depression-like behaviors in female adolescent offspring. Deficits in pre-pulse inhibition and social interaction were also observed. However, the Poly I:C rats had better performance than the controls in the novel object recognition memory test, which demonstrated a behavioral phenotype with improved cognitive function. Prenatal Poly I:C exposure caused brain region-specific elevation of the P2X7 receptor- and NF-κB-NLRP3-IL-1ß inflammatory signaling in female juvenile rats. Prenatal Poly I:C exposure decreased expression of GABAA receptor subunits Gabrb3 in the prefrontal cortex and Gabrb1 and dopamine D2 receptor in the hippocampus, but increased NMDA receptor subunit Grin2a in the prefrontal cortex, 5-HT2A in the hippocampus, and Gabrb3 and D2 receptor in the nucleus accumben. CONCLUSIONS: Prenatal Poly I:C challenge causes behavioral deficits and brain-specific neurotransmission changes via elevated neuroinflammation responses in female adolescent offspring rats.


Neuroinflammatory Diseases/metabolism , Poly I-C/pharmacology , Prenatal Exposure Delayed Effects/metabolism , Synaptic Transmission/drug effects , Animals , Behavior, Animal , Brain/drug effects , Cognition/drug effects , Disease Models, Animal , Female , Hippocampus/drug effects , Memory, Short-Term/drug effects , Prefrontal Cortex/metabolism , Pregnancy , Prepulse Inhibition/drug effects , Rats , Receptors, Dopamine D2/metabolism , Schizophrenia/metabolism
6.
Cells ; 10(12)2021 12 11.
Article En | MEDLINE | ID: mdl-34944011

Both in utero exposure to maternal immune activation and cannabis use during adolescence have been associated with increased risk for the development of schizophrenia; however, whether these exposures exert synergistic effects on brain function is not known. In the present study, mild maternal immune activation (MIA) was elicited in mice with prenatal exposure to polyinosinic-polycytidylic acid (poly(I:C)), and ∆9-tetrahydrocannabinol (THC) was provided throughout adolescence in cereal (3 mg/kg/day for 5 days). Neither THC nor MIA pretreatments altered activity in assays used to characterize hyperdopaminergic states in adulthood: amphetamine hyperlocomotion and prepulse inhibition of the acoustic startle reflex. Adolescent THC treatment elicited deficits in spatial memory and enhanced spatial reversal learning in adult female mice in the Morris water maze, while exposure to MIA elicited female-specific deficits in fear extinction learning in adulthood. There were no effects in these assays in adult males, nor were there interactions between THC and MIA in adult females. While doses of poly(I:C) and THC were sufficient to elicit behavioral effects, particularly relating to cognitive performance in females, there was no evidence that adolescent THC exposure synergized with the risk imposed by MIA to worsen behavioral outcomes in adult mice of either sex.


Aging/physiology , Behavior, Animal/drug effects , Dronabinol/pharmacology , Prenatal Exposure Delayed Effects/immunology , Amphetamine , Animals , Conditioning, Classical , Extinction, Psychological/drug effects , Fear/drug effects , Female , Locomotion/drug effects , Male , Maze Learning/physiology , Mice, Inbred C57BL , Pregnancy , Prepulse Inhibition/drug effects , Rats, Sprague-Dawley , Reflex, Startle/drug effects , Swimming
7.
Int J Neuropsychopharmacol ; 24(12): 979-987, 2021 12 08.
Article En | MEDLINE | ID: mdl-34622270

BACKGROUND: The present study utilized the methylazoxymethanol (MAM) neurodevelopmental rodent model of schizophrenia (SCZ) to evaluate the hypothesis that individuals with SCZ smoke in an attempt to "self-medicate" their symptoms through nicotine (NIC) intake. METHODS: To explore this question, we examined the effects of acute and chronic administration of NIC in 2 established behavioral tests known to be disrupted in the MAM model: prepulse inhibition of startle and novel object recognition. Additionally, we assessed the effects of acute and chronic NIC on 2 indices of the pathophysiology of SCZ modeled by MAM, elevated dopamine neuron population activity in the ventral tegmental area and neuronal activity in the ventral hippocampus, using in vivo electrophysiological recordings. RESULTS: Our findings demonstrated that both acute and chronic administration of NIC significantly improved deficits in prepulse inhibition of startle and novel object recognition among MAM rats and normalized elevated ventral tegmental area and ventral hippocampal neuronal activity in these animals. CONCLUSION: Together, these findings of NIC-induced improvement of deficits lend support for a "self-medication" hypothesis behind increased cigarette smoking in SCZ and illustrate the potential utility of nicotinic modulation in future pharmacotherapies for certain SCZ symptoms.


Methylazoxymethanol Acetate/analogs & derivatives , Nicotine/administration & dosage , Schizophrenia/drug therapy , Animals , Disease Models, Animal , Dopaminergic Neurons/drug effects , Hippocampus/drug effects , Male , Prepulse Inhibition/drug effects , Rats , Rats, Sprague-Dawley , Self Medication , Ventral Tegmental Area/drug effects
8.
Neuropharmacology ; 201: 108838, 2021 12 15.
Article En | MEDLINE | ID: mdl-34666074

Prepulse inhibition (PPI) is disrupted in many neuropsychiatric diseases. Although the inverse agonist of the 5-hydroxytryptamine 2A (5-HT2A) receptors, pimavanserin, alleviates PPI deficits in rodents, the precise mechanisms and critical brain areas in the reversal effect of 5-HT2A receptor inverse agonists remain unclear. The present study aimed to investigate the critical brain areas responsible for the reversal effect of the 5-HT2A receptor inverse agonist on PPI deficits in male mice. The results showed that intraperitoneal administration of pimavanserin was found to improve normal PPI behavior and reverse PPI deficits elicited by the dopamine D1/D2 receptor nonselective agonist, pergolide. Further, local infusion of pimavanserin into the nucleus accumbens and ventral hippocampus reversed PPI deficits, whereas the same manipulation in the medial prefrontal cortex or ventral tegmental area did not reverse PPI deficits. Overall, the nucleus accumbens and ventral hippocampus are the critical brain areas responsible for the reversal effect of 5-HT2A inverse agonists on PPI deficits. Such findings contribute to the extensive exploration of the accurate molecular and neural mechanisms underlying the antipsychotic effects of 5-HT2A receptor inverse agonists, especially the neural circuits modulated by 5-HT2A receptor activity.


Hippocampus/drug effects , Hippocampus/physiology , Nucleus Accumbens/drug effects , Nucleus Accumbens/physiology , Piperidines/pharmacology , Prepulse Inhibition/drug effects , Serotonin 5-HT2 Receptor Antagonists , Urea/analogs & derivatives , Animals , Male , Mice, Inbred C57BL , Urea/pharmacology
9.
J Chem Neuroanat ; 118: 102040, 2021 12.
Article En | MEDLINE | ID: mdl-34695562

Recent studies have revealed an altered expression of NKCC1 and KCC2 in prefrontal cortex (PFC) and hippocampus of schizophrenic patients. Despite extensive considerations, the alteration of NKCC1 and KCC2 co-transporters at different stages of development has not been fully studied. Therefore, we evaluated the expression of these transporters in PFC and hippocampus at time points of four, eight, and twelve weeks in post-weaning social isolation rearing rat model. For this purpose, 23-25 days-old rats were classified into social- or isolation-reared groups. The levels of NKCC1 and KCC2 mRNA expression were evaluated at hippocampus or PFC regions at the time-points of four, eight, and twelve weeks following housing. Post-weaning isolation rearing decreased the hippocampal KCC2 mRNA expression level, but does not affect the NKCC1 mRNA expression. However, no significant difference was observed in the PFC mRNA levels of NKCC1 and KCC2 in the isolation-reared group compared to the socially-reared group during the course of modeling. Further, we assessed the therapeutic effect of selective NKCC1 inhibitor bumetanide (10 mg/kg), on improvement of prepulse inhibition (PPI) test on twelve weeks isolation-reared rats. Intraperitoneal administration of bumetanide (10 mg/kg) did not exert beneficial effects on PPI deficit. Our findings show that isolation rearing reduces hippocampal KCC2 expression level and may underlie hippocampal GABA excitatory. In addition, 10 mg/kg bumetanide is not effective in improving the reduced PPI of twelve weeks isolation-reared rats. Collectively, our findings show that hippocampal chloride transporter KCC2 contributes to excitatory GABA dysregulation in the developmental rat model of schizophrenia.


Hippocampus/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism , Symporters/genetics , gamma-Aminobutyric Acid/metabolism , Animals , Bumetanide/pharmacology , Diuretics/pharmacology , Male , Prefrontal Cortex/metabolism , Prepulse Inhibition/drug effects , Rats , Rats, Sprague-Dawley , Social Isolation , K Cl- Cotransporters
10.
Pharmacol Biochem Behav ; 211: 173292, 2021 12.
Article En | MEDLINE | ID: mdl-34710401

This study analyzed whether the positive allosteric modulator of metabotropic glutamate receptor type 5 (mGlu5) 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) would alleviate deficits in prepulse inhibition (PPI) and affect dopamine (DA) D2 signaling in the dorsal striatum and prefrontal cortex (PFC) in the neonatal quinpirole (NQ) model of schizophrenia (SZ). Male and female Sprague-Dawley rats were neonatally treated with either saline (NS) or quinpirole HCL (1 mg/kg; NQ), a DAD2 receptor agonist, from postnatal days (P) 1-21. Rats were raised to P44 and behaviorally tested on PPI from P44-P48. Before each trial, rats were subcutaneous (sc) administered saline or CDPPB (10 mg/kg or 30 mg/kg). On P50, rats were given a spontaneous locomotor activity test after CDPPB or saline administration. On P51, the dorsal striatum and PFC were evaluated for both arrestin-2 (ßA-2) and phospho-AKT protein levels. NQ-treated rats demonstrated a significant deficit in PPI, which was alleviated to control levels by the 30 mg/kg dose of CDPPB. There were no significant effects of CDPPB on locomotor activity. NQ treatment increased ßA-2 and decreased phospho-AKT in both the dorsal striatum and PFC, consistent with an increase DAD2 signaling. The 30 mg/kg dose of CDPPB significantly reversed changes in ßA-2 in the dorsal striatum and PFC and phospho-AKT in the PFC equivalent to controls. Both doses of CDPPB produced a decrease of phospho-AKT in the PFC compared to controls. This study revealed that a mGlu5 positive allosteric modulator was effective to alleviate PPI deficits and striatal DAD2 signaling in the NQ model of SZ.


Benzamides/pharmacology , Pyrazoles/pharmacology , Quinpirole/pharmacology , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, Dopamine D2/metabolism , Schizophrenia/drug therapy , Sensory Gating/drug effects , Animals , Animals, Newborn , Behavior, Animal/drug effects , Corpus Striatum/metabolism , Dopamine Agonists/pharmacology , Female , Locomotion/drug effects , Male , Prefrontal Cortex/metabolism , Prepulse Inhibition/drug effects , Rats , Rats, Sprague-Dawley , Schizophrenia/metabolism
11.
Exp Neurol ; 345: 113836, 2021 11.
Article En | MEDLINE | ID: mdl-34384790

Methoxetamine (MXE) is a dissociative substance of the arylcyclohexylamine class that has been present on the designer drug market as a ketamine-substitute since 2010. We have previously shown that MXE (i) possesses ketamine-like discriminative and positive rewarding effects in rats, (ii) affects brain processing involved in cognition and emotional responses, (iii) causes long-lasting behavioral abnormalities and neurotoxicity in rats and (iv) induces neurological, sensorimotor and cardiorespiratory alterations in mice. To shed light on the mechanisms through which MXE exerts its effects, we conducted a multidisciplinary study to evaluate the various neurotransmitter systems presumably involved in its actions on the brain. In vivo microdialysis study first showed that a single administration of MXE (0.25 and 0.5 mg/kg, i.v.) is able to significantly alter serotonin levels in the rat medial prefrontal cortex (mPFC) and nucleus accumbens. Then, we observed that blockade of the serotonin 5-HT2 receptors through two selective antagonists, ketanserin (0.1 mg/kg, i.p.) and MDL 100907 (0.03 mg/kg, i.p.), at doses not affecting animals behavior per se, attenuated the facilitatory motor effect and the inhibition on visual sensory responses induced by MXE (3 mg/kg, i.p.) and ketamine (3 mg/kg, i.p.), and prevented MXE-induced reduction of the prepulse inhibition in rats, pointing to the 5-HT2 receptors as a key target for the recently described MXE-induced sensorimotor effects. Finally, in-vitro electrophysiological studies revealed that the GABAergic and glutamatergic systems are also likely involved in the mechanisms through which MXE exerts its central effects since MXE inhibits, in a concentration-dependent manner, NMDA-mediated field postsynaptic potentials and GABA-mediated spontaneous currents. Conversely, MXE failed to alter both the AMPA component of field potentials and presynaptic glutamate release, and seems not to interfere with the endocannabinoid-mediated effects on mPFC GABAergic synapses. Altogether, our results support the notion of MXE as a NMDA receptor antagonist and shed further lights into the central mechanisms of action of this ketamine-substitute by pointing to serotonin 5-HT2 receptors as crucial players in the expression of its sensorimotor altering effects and to the NMDA and GABA receptors as potential further important targets of action.


Cyclohexanones/pharmacology , Cyclohexylamines/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Illicit Drugs/pharmacology , Prepulse Inhibition/drug effects , Receptors, Serotonin, 5-HT2/metabolism , Acoustic Stimulation/adverse effects , Animals , Dose-Response Relationship, Drug , Excitatory Postsynaptic Potentials/physiology , Male , Organ Culture Techniques , Prepulse Inhibition/physiology , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism
12.
Int J Neuropsychopharmacol ; 24(11): 894-906, 2021 11 12.
Article En | MEDLINE | ID: mdl-34338765

BACKGROUND: HIV-associated neurocognitive disorder (HAND) is commonly observed in persons living with HIV (PWH) and is characterized by cognitive deficits implicating disruptions of fronto-striatal neurocircuitry. Such circuitry is also susceptible to alteration by cannabis and other drugs of abuse. PWH use cannabis at much higher rates than the general population, thus prioritizing the characterization of any interactions between HIV and cannabinoids on cognitively relevant systems. Prepulse inhibition (PPI) of the startle response, the process by which the motor response to a startling stimulus is attenuated by perception of a preceding non-startling stimulus, is an operational assay of fronto-striatal circuit integrity that is translatable across species. PPI is reduced in PWH. The HIV transgenic (HIVtg) rat model of HIV infection mimics numerous aspects of HAND, although to date the PPI deficit observed in PWH has yet to be fully recreated in animals. METHODS: PPI was measured in male and female HIVtg rats and wild-type controls following acute, nonconcurrent treatment with the primary constituents of cannabis: Δ 9-tetrahydrocannabinol (THC; 1 and 3 mg/kg, s.c.) and cannabidiol (1, 10, and 30 mg/kg, i.p.). RESULTS: HIVtg rats exhibited a significant PPI deficit relative to wild-type controls. THC reduced PPI in controls but not HIVtg rats. Cannabidiol exerted only minor, genotype-independent effects on PPI. CONCLUSIONS: HIVtg rats exhibit a relative insensitivity to the deleterious effects of THC on the fronto-striatal function reflected by PPI, which may partially explain the higher rates of cannabis use among PWH.


Cannabinoids/pharmacology , HIV Infections/physiopathology , Sensory Gating/drug effects , Acoustic Stimulation , Animals , Cannabidiol/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Dronabinol/pharmacology , Female , Hallucinogens/pharmacology , Male , Prepulse Inhibition/drug effects , Rats , Rats, Transgenic , Reflex, Startle/drug effects
13.
Int J Neuropsychopharmacol ; 24(9): 734-748, 2021 09 21.
Article En | MEDLINE | ID: mdl-34165516

BACKGROUND: Minocycline (MIN) is a tetracycline with antioxidant, anti-inflammatory, and neuroprotective properties. Given the likely involvement of inflammation and oxidative stress (IOS) in schizophrenia, MIN has been proposed as a potential adjuvant treatment in this pathology. We tested an early therapeutic window, during adolescence, as prevention of the schizophrenia-related deficits in the maternal immune stimulation (MIS) animal model. METHODS: On gestational day 15, Poly I:C or vehicle was injected in pregnant Wistar rats. A total 93 male offspring received MIN (30 mg/kg) or saline from postnatal day (PND) 35-49. At PND70, rats were submitted to the prepulse inhibition test. FDG-PET and T2-weighted MRI brain studies were performed at adulthood. IOS markers were evaluated in frozen brain tissue. RESULTS: MIN treatment did not prevent prepulse inhibition test behavioral deficits in MIS offspring. However, MIN prevented morphometric abnormalities in the third ventricle but not in the hippocampus. Additionally, MIN reduced brain metabolism in cerebellum and increased it in nucleus accumbens. Finally, MIN reduced the expression of iNOS (prefrontal cortex, caudate-putamen) and increased the levels of KEAP1 (prefrontal cortex), HO1 and NQO1 (amygdala, hippocampus), and HO1 (caudate-putamen). CONCLUSIONS: MIN treatment during adolescence partially counteracts volumetric abnormalities and IOS deficits in the MIS model, likely via iNOS and Nrf2-ARE pathways, also increasing the expression of cytoprotective enzymes. However, MIN treatment during this peripubertal stage does not prevent sensorimotor gating deficits. Therefore, even though it does not prevent all the MIS-derived abnormalities evaluated, our results suggest the potential utility of early treatment with MIN in other schizophrenia domains.


Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Brain Diseases, Metabolic/drug therapy , Minocycline/pharmacology , Nervous System Malformations/pathology , Neurodevelopmental Disorders/drug therapy , Oxidative Stress/drug effects , Prenatal Exposure Delayed Effects/drug therapy , Prepulse Inhibition/drug effects , Schizophrenia/drug therapy , Animals , Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Behavior, Animal/drug effects , Brain Diseases, Metabolic/etiology , Disease Models, Animal , Female , Magnetic Resonance Imaging , Male , Minocycline/administration & dosage , Nervous System Malformations/diagnostic imaging , Nervous System Malformations/etiology , Neurodevelopmental Disorders/chemically induced , Neurodevelopmental Disorders/immunology , Positron-Emission Tomography , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/immunology , Rats , Rats, Wistar , Schizophrenia/chemically induced , Schizophrenia/immunology
14.
Article En | MEDLINE | ID: mdl-34015384

Cannabidiol (CBD), a major non-psychotomimetic component of the Cannabis sativa plant, shows therapeutic potential in several psychiatric disorders, including schizophrenia. The molecular mechanisms underlying the antipsychotic-like effects of CBD are not fully understood. Schizophrenia and antipsychotic treatment can modulate DNA methylation in the blood and brain, resulting in altered expression of diverse genes associated with this complex disorder. However, to date, the possible involvement of DNA methylation in the antipsychotic-like effects of CBD has not been investigated. Therefore, this study aimed at evaluating in mice submitted to the prepulse inhibition (PPI) model: i) the effects of a single injection of CBD or clozapine followed by AMPH or MK-801 on PPI and global DNA methylation changes in the ventral striatum and prefrontal cortex (PFC); and ii). if the acute antipsychotic-like effects of CBD would last for 24-h. AMPH (5 mg/kg) and MK-801 (0.5 mg/kg) impaired PPI. CBD (30 and 60 mg/kg), similar to clozapine (5 mg/kg), attenuated AMPH- and MK801-induced PPI disruption. AMPH, but not MK-801, increased global DNA methylation in the ventral striatum, an effect prevented by CBD. CBD and clozapine increased, by themselves, DNA methylation in the prefrontal cortex. The acute effects of CBD (30 or 60 mg/kg) on the PPI impairment induced by AMPH or MK-801 was also detectable 24 h later. Altogether, the results show that CBD induces acute antipsychotic-like effects that last for 24-h. It also modulates DNA methylation in the ventral striatum, suggesting a new potential mechanism for its antipsychotic-like effects.


Cannabidiol/pharmacology , Clozapine/pharmacology , Dizocilpine Maleate/pharmacology , Epigenesis, Genetic/drug effects , Prepulse Inhibition/drug effects , Sensory Gating/drug effects , Ventral Striatum/drug effects , Amphetamine/pharmacology , Animals , Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , DNA Methylation , Dizocilpine Maleate/administration & dosage , Hallucinogens/pharmacology , Male , Mice , Neuroprotective Agents/pharmacology , Prefrontal Cortex/drug effects , Reflex, Startle/drug effects , Schizophrenia , Time Factors
15.
Behav Pharmacol ; 32(5): 404-412, 2021 08 01.
Article En | MEDLINE | ID: mdl-33883449

Reduced brain-derived neurotrophic factor (BDNF) signalling has been implicated in schizophrenia endophenotypes, including deficits in prepulse inhibition (PPI). Maternal immune activation (MIA) is a widely used neurodevelopmental animal model for schizophrenia but it is unclear if BDNF and its receptor, tropomyosin receptor kinase B (TrkB), are involved in PPI regulation in this model. Pregnant Long Evans rats were treated with the viral mimetic, polyinosinic-polycytidylic acid (poly I:C; 4 mg/kg i.v.), and nine male offspring from these dams were compared in adulthood to 11 male Long Evans controls. Offspring underwent PPI testing following injection with the TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF) (10 mg/kg i.p.), with or without the dopamine receptor agonist, apomorphine (APO; 1 mg/kg s.c.), or the dopamine releasing drug, methamphetamine (METH; 2 mg/kg s.c.). Acute administration of APO and METH caused the expected significant reduction of PPI. Acute administration of 7,8-DHF did not alter PPI on its own; however, it significantly reversed the effect of APO on PPI in poly I:C rats, but not in controls. A similar trend was observed in combination with METH. Western blot analysis of frontal cortex revealed significantly increased levels of BDNF protein, but not TrkB or phosphorylated TrkB/TrkB levels, in poly I:C rats. These findings suggest that, selectively in MIA offspring, 7,8-DHF has the ability to reverse PPI deficits caused by dopaminergic stimulation. This effect could be associated with increased BDNF expression in the frontal cortex. These data suggest that targeting BDNF signalling may have therapeutic potential for the treatment of certain symptoms of schizophrenia.


Brain-Derived Neurotrophic Factor/metabolism , Flavones/pharmacology , Prepulse Inhibition , Schizophrenia , Animals , Disease Models, Animal , Drug Discovery , Frontal Lobe/metabolism , Male , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Rats , Rats, Long-Evans , Receptor, trkB/agonists , Schizophrenia/drug therapy , Schizophrenia/metabolism , Signal Transduction/drug effects
16.
Neurosci Lett ; 755: 135913, 2021 06 11.
Article En | MEDLINE | ID: mdl-33895274

Schizophrenia modeling by disrupting prepulse inhibition (PPI) is one of the most frequently used psycho-pharmacological methods by administering pharmacological agents to stimulate disruption. However, since PPI is also a biological indicator of schizophrenia, it is possible to classify subjects based on their basal PPI values and group them as "low inhibition" and "high inhibition without taking any pharmacological agent. Therefore this study was conducted to show that rats can be divided into groups in terms of susceptibility to schizophrenia according to basal PPI values. It was also observed that these groups might give different responses to different pharmacological agents (apomorphine, amphetamine, MK-801, scopolamine, nicotine, caffeine). Male Sprague Dawley rats (250-350 g) were used in the study. To examine the effects of different pharmacological agents on the groups, apomorphine (0.5 mg/kg and 1 mg/kg), amphetamine (4 mg/kg), MK-801 (0.05 mg/kg and 0.15 mg/kg), scopolamine (0.4 mg/kg), nicotine (1 mg/kg) and caffeine (10 mg/kg and 30 mg/kg) were used. Amphetamine showed a disruptive effect on PPI in both low and high inhibitory groups, while apomorphine, MK-801, scopolamine, and nicotine showed PPI decrease only in the high inhibitory group. Besides, caffeine decreased PPI levels at two doses in the high inhibitory group; however, 10 mg/kg dose caffeine was increased only in the low inhibitory group. According to the data obtained from this study, rats can be grouped with baseline inhibition values by using PPI, and response differences of pharmacological agents to groups may vary.


Central Nervous System Stimulants/pharmacology , Cholinergic Antagonists/pharmacology , Dopamine Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Nicotinic Agonists/pharmacology , Prepulse Inhibition/drug effects , Acoustic Stimulation/methods , Amphetamine/pharmacology , Animals , Apomorphine/pharmacology , Caffeine/pharmacology , Dizocilpine Maleate/pharmacology , Male , Nicotine/pharmacology , Prepulse Inhibition/physiology , Rats , Rats, Sprague-Dawley , Reflex, Startle/drug effects , Reflex, Startle/physiology , Scopolamine/pharmacology
17.
Behav Brain Res ; 408: 113291, 2021 06 25.
Article En | MEDLINE | ID: mdl-33836169

The symptoms of human depression often include cognitive deficits. However, cognition is not frequently included in the behavioral assessments conducted in preclinical models of depression. For example, it is well known that repeated corticosterone (CORT) injections in rodents produce depression-like behavior as measured by the forced swim test, sucrose preference test, and tail suspension test, but the cognitive impairments produced by repeated CORT have not been thoroughly examined. The purpose of this experiment was to assess the effect of repeated CORT injections on several versions of object recognition memory and modulation of the acoustic startle response by relatively low intensity prepulses, along with the more traditional assessment of depression-like behavior using the forced swim test. Rats received 21 days of CORT (40 mg/kg) or vehicle injections followed by a battery of behavioral tests. Importantly, during behavioral testing CORT treatment did not occur (CORT withdrawal). Corticosterone decreased body weight, increased immobility in the forced swim test, lowered startle amplitudes, and facilitated responding to trials with a short interval (30 ms) between the prepulse and pulse. Corticosterone also impaired both object location and object-in-place recognition memory, while sparing performance on object recognition memory. Collectively, our data suggest that CORT produces selective disruptions in prepulse facilitation, object location, and object-in-place recognition memory, and that these impairments should be considered as part of the phenotype produced by repeated CORT, and perhaps chronic stress.


Anti-Inflammatory Agents/adverse effects , Behavior, Animal/drug effects , Cognitive Dysfunction/chemically induced , Corticosterone/adverse effects , Depression/chemically induced , Prepulse Inhibition/drug effects , Recognition, Psychology/drug effects , Reflex, Startle/drug effects , Animals , Male , Rats , Rats, Long-Evans , Stress, Psychological
18.
Mol Brain ; 14(1): 68, 2021 04 12.
Article En | MEDLINE | ID: mdl-33845872

22q11.2 deletion syndrome (22q11.2DS) is a disorder caused by the segmental deletion of human chromosome 22. This chromosomal deletion is known as high genetic risk factors for various psychiatric disorders. The different deletion types are identified in 22q11.2DS patients, including the most common 3.0-Mb deletion, and the less-frequent 1.5-Mb and 1.4-Mb deletions. In previous animal studies of psychiatric disorders associated with 22q11.2DS mainly focused on the 1.5-Mb deletion and model mice mimicking the human 1.5-Mb deletion have been established with diverse genetic backgrounds, which resulted in the contradictory phenotypes. On the other hand, the contribution of the genes in 1.4-Mb region to psychiatric disorders is poorly understood. In this study, we generated two mouse lines that reproduced the 1.4-Mb and 1.5-Mb deletions of 22q11.2DS [Del(1.4 Mb)/+ and Del(1.5 Mb)/+] on the pure C57BL/6N genetic background. These mutant mice were analyzed comprehensively by behavioral tests, such as measurement of locomotor activity, sociability, prepulse inhibition and fear-conditioning memory. Del(1.4 Mb)/+ mice displayed decreased locomotor activity, but no abnormalities were observed in all other behavioral tests. Del(1.5 Mb)/+ mice showed reduction of prepulse inhibition and impairment of contextual- and cued-dependent fear memory, which is consistent with previous reports. Furthermore, apparently intact social recognition in Del(1.4 Mb)/+ and Del(1.5 Mb)/+ mice suggests that the impaired social recognition observed in Del(3.0 Mb)/+ mice mimicking the human 3.0-Mb deletion requires mutations both in 1.4-Mb and 1.5 Mb regions. Our previous study has shown that Del(3.0 Mb)/+ mice presented disturbance of behavioral circadian rhythm. Therefore, we further evaluated sleep/wakefulness cycles in Del(3.0 Mb)/+ mice by electroencephalogram (EEG) and electromyogram (EMG) recording. EEG/EMG analysis revealed the disturbed wakefulness and non-rapid eye moving sleep (NREMS) cycles in Del(3.0 Mb)/+ mice, suggesting that Del(3.0 Mb)/+ mice may be unable to maintain their wakefulness. Together, our mouse models deepen our understanding of genetic contributions to schizophrenic phenotypes related to 22q11.2DS.


22q11 Deletion Syndrome/genetics , Mental Disorders/genetics , Sequence Deletion , 22q11 Deletion Syndrome/physiopathology , Animals , Base Sequence , Behavior, Animal/drug effects , Circadian Rhythm/drug effects , Circadian Rhythm/physiology , Conditioning, Classical , Cues , Disease Models, Animal , Electroencephalography , Electromyography , Fear , Gene Dosage , Gene Expression Regulation/drug effects , Haloperidol/administration & dosage , Haloperidol/pharmacology , Male , Memory/drug effects , Memory/physiology , Mental Disorders/physiopathology , Mice, Inbred C57BL , Motor Activity/drug effects , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sensory Gating/drug effects , Sensory Gating/physiology , Sleep/drug effects , Sleep/physiology , Social Behavior , Wakefulness/drug effects , Wakefulness/physiology
19.
Behav Brain Res ; 406: 113229, 2021 05 21.
Article En | MEDLINE | ID: mdl-33684425

Increased neuroinflammation has been shown in individuals diagnosed with schizophrenia (SCHZ). This study evaluated a novel immune modulator (PD2024) that targets the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) to alleviate sensorimotor gating deficits and microglial activation employing two different rodent models of SCHZ. In Experiment 1, rats were neonatally treated with saline or the dopamine D2-like agonist quinpirole (NQ; 1 mg/kg) from postnatal day (P) 1-21 which produces increases of dopamine D2 receptor sensitivity throughout the animal's lifetime. In Experiment 2, rats were neonatally treated with saline or the immune system stimulant polyinosinic:polycytidylic acid (Poly I:C) from P5-7. Neonatal Poly I:C treatment mimics immune system activation associated with SCHZ. In both experiments, rats were raised to P30 and administered a control diet or a novel TNFα inhibitor PD2024 (10 mg/kg) in the diet from P30 until P67. At P45-46 and from P60-67, animals were behaviorally tested on auditory sensorimotor gating as measured through prepulse inhibition (PPI). NQ or Poly I:C treatment resulted in PPI deficits, and PD2024 treatment alleviated PPI deficits in both models. Results also revealed that increased hippocampal and prefrontal cortex microglial activation produced by neonatal Poly I:C was significantly reduced to control levels by PD2024. In addition, a separate group of animals neonatally treated with saline or Poly I:C from P5-7 demonstrated increased TNFα protein levels in the hippocampus but not prefrontal cortex, verifying increased TNFα in the brain produced by Poly I:C. Results from this study suggests that that brain TNFα is a viable pharmacological target to treat the neuroinflammation known to be associated with SCHZ.


Hippocampus/drug effects , Immunomodulating Agents/pharmacology , Microglia/drug effects , Neuroinflammatory Diseases/drug therapy , Prepulse Inhibition/drug effects , Schizophrenia/drug therapy , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Age Factors , Animals , Animals, Newborn , Behavior, Animal/drug effects , Disease Models, Animal , Dopamine Agonists/administration & dosage , Hippocampus/immunology , Hippocampus/metabolism , Hippocampus/physiopathology , Immunomodulating Agents/administration & dosage , Male , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/physiopathology , Rats , Rats, Sprague-Dawley , Schizophrenia/immunology , Schizophrenia/metabolism , Schizophrenia/physiopathology
20.
Behav Neurosci ; 135(1): 32-38, 2021 Feb.
Article En | MEDLINE | ID: mdl-33734732

Prepulse inhibition (PPI) refers to the modulation of the startle response by the presentation of a weaker stimulus prior to the onset of the startle stimulus. This response is consolidated along the maturation process of the mesocortical system, where the dopamine neurotransmitter plays an important role. In fact, it has been reported that agonist and antagonist dopaminergic drugs are able to change PPI expression. This study was aimed to analyze the relationship between the adult medial prefrontal cortex (mPfc) and dopaminergic involvement in PPI throughout the life span. Specifically, the present experiment analyzed the effect of the administration of dopaminergic agonist amphetamine on PPI in two different age periods in Wistar rats: postnatal day (PND) 28 and PND 70. In this last period, we also explored the relationship between PPI response and amphetamine effects after mPfc lesion. The results showed that PPI was expressed in all groups and periods; however, amphetamine only modulated this effect during adulthood. We also found that the mPfc is essential to modulate PPI after amphetamine consumption. Besides, our results suggest a role for dopamine and mPfc as important modulators of PPI in adulthood. Nevertheless, this neurotransmitter could not be involved in the expression of PPI because the administration of a dopaminergic agonist was ineffective in PND-28 period. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Amphetamine/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Prepulse Inhibition/drug effects , Acoustic Stimulation , Animals , Dopamine/metabolism , Dopamine Agents/pharmacology , Male , Rats , Rats, Wistar , Reflex, Startle/drug effects , Reflex, Startle/physiology
...